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Abstract

We present a novel time-reversal spatial convergence
metric, inspired by probability theory and the electromag-
netic wave potential energy density, and apply it to sev-
eral FDTD time-reversal simulations based on a modified
Meep implementation. The proposed metric is a convex-
quadratic function of time, attaining its minimum at a time
and a value corresponding to the source power expected
value and standard deviation.

In the electromagnetic time-reversal cavity [1], a sensor
spanning a full solid angle around a source allows to fo-
cus the EM fields at the original source location. This
principle has been applied for both wave focusing and
imaging. Regarding the focusing of the time-reversed
waves, two issues remain: first, how to determine when
the optimal (if any) focusing happens; second, how to
meaningfully compare the “quality of focusing” of EM
waves (i.e., the degree to which waves concentrated at
a single location) across different scenarios. The latter
element is central to super-resolution techniques.

State-of-the-art methods involve determining the local
maxima or comparing the maximum to the side lobes
[2, 3], or computing the entropy of the electric field
[4]. The first two methods might not be appropriate
for narrow-band signals. Also, the entropy lacks inter-
pretability for EM waves while also suffering from an os-
cillating behavior, making optimal focusing hard to deter-
mine. In this paper, we propose a new spatial conver-
gence metric based on probability theory and EM energy
density and validate it in an FDTD simulation involving
both wide- and narrow-band sources.

We base our metric on the EM energy density uEM, which
describes the density of potential energy carried by the
EM fields. Its instantaneous value at time t and posi-
tion r in a homogeneous, isotropic, lossless and passive
medium of permittivity ε and permeability µ is given by

uEM(t, r) =
1

2ε
|E(t, r)|2 + µ

2
|B(t, r)|2 (1)

As long as the field potential energy is conserved, the

integral

UEM =

∫∫∫
R3

uEM(t, r)d
3r (2)

is independent of time. From this, we define the expected
value of a function g with respect to the EM energy as

Et
EM[g ] =

1

UEM

∫∫∫
R3

g(t, r)uEM(t, r)d
3r (3)

This amounts to considering uEM(t, r)/UEM as a proba-
bility density function (PDF) in a three dimensional (spa-
tial) probability space. We now define the expected x-
coordinate of energy at time t as

x t0 = Et
EM [x ] (4)

and similarly for the y - and z-coordinates. In turn, the
energy location standard deviation σt

x for the x-coordinate
at time t is

(σt
x)

2 = Et
EM
[
(x − x t0)

2
]

(5)

This corresponds to our definition of inverse of the “qual-
ity of focusing” of EM fields in the x-coordinate. We can
define an aggregate metric combining all three axes by
computing an equivalent volume given by the geometric
mean

σt = (σt
xσ

t
yσ

t
z)

1/3 (6)

To validate the present metric, we run a set of 3D FDTD
simulations using the Meep solver [5]. The simulation do-
main is a homogeneous, lossless, isotropic and passive
medium, with an x-polarized dipole source at the origin.
We test four electric dipole moments: a modulated Gaus-
sian pulse, two windowed sines (of two and four periods),
and an asymmetric signal consisting of two sequential
windowed sines of different amplitudes. We also vary the
normalized frequencies ranging from 1

2 to 2 (all quantities
in Meep are normalized such that the speed of light in
vacuum is c = 1, and we choose the base unit of length
to equal one wavelength).

To perform the time reversal, we modify the Meep source
code to scale the magnetic fields H and B by a factor −1
efficiently, thus reversing the Poynting vector. This scaling
corresponds to time reversal under two conditions: first,
there is no active source and no charge accumulation.
Second, the domain is large enough to accommodate the



0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Normalized main frequency component

1

2

3

4

No
rm

ali
ze

d 
tim

e

Optimal focusing time t
and source power expected value ts

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Normalized main frequency component

0.0

0.5

1.0

1.5

2.0

W
av

ele
ng

th

Energy location standard deviation 
and source power standard deviation s

Modulated
Gaussian
Windowed sine
(2 periods)
Windowed sine
(4 periods)
Windowed sine
(1 period, 1 repeat)

t
 o

r 

t s
 o

r 
s

Figure 1. FDTD validation of the proposed spatial convergence metric for four electric dipole moments p as a function of the
normalized main frequency component. The main frequency component corresponds to the frequency of the maximum of the
spectrum. Left : optimal time of field energy focusing t? given by the simulation and the corresponding expected time of source
power ts . Center: energy location standard deviation σ? and source power standard deviation σs .

entire signal.

During the time reversal and at each time step, we com-
pute the expected locations of energy x t0 , y

t
0 , z

t
0 , then the

aggregate energy location standard deviation σt from
Equation (6). In all simulations, the shape of σt as a func-
tion of time is nearly quadratic, allowing to determine the
optimal focusing time t? and the optimal aggregate en-
ergy location standard deviation σ? from the coordinates
of the minimum of the quadratic fit.

Next, we define the expected time of source power as

ts =

∫∞
−∞ tp′(t)2dt∫∞
−∞ p′(t)2dt

(7)

where p′ is the derivative of the dipole moment. Likewise,
the source power standard deviation σs is given by

σ2
s =

∫∞
−∞(t − ts)

2p′(t)2dt∫∞
−∞ p′(t)2dt

(8)

The results show that the expected location of energy is
always the origin, up to numerical errors. Also, the source
power metrics ts and σs relate closely to their field-based
counterparts t? and σ?. As seen in Figure 1, there is a
very good agreement between t? and ts . If a source de-
livers a delayed signal, we can expect the same from the
time-reversed field. Next, the energy location standard
deviation σ? and the source power standard deviation
σs have the same inverse frequency dependence, and
their ratio σ?/σs lies in the interval [0.6, 0.8] across all fre-
quencies and dipole moments. Note that by reducing the
FDTD cell size, this interval tightens. Thus, the proposed
metric seems to be independent of the type of dipole mo-
ment and depends only on the source power standard
deviation. As the main frequency component increases,
the optimal focusing time and the energy location stan-
dard deviation decrease inversely. It is already estab-
lished that time reversal works better with wide-band sig-
nals (i.e., those with low power standard deviation), which

agrees with the results of the proposed metric.

To conclude, the proposed metric offers three advan-
tages: the possibility to retrieve the original source lo-
cation through the expected location of energy, an au-
tomated way to determine the optimal time of focusing t?

(e.g., allowing to reduce the duration of time-reversal sim-
ulations by stopping at t?), and a measure of the spatial
spread of energy thanks to σ?.
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